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Abstract
Within the framework of the short periodic orbit theory in quantum chaos,
matrix elements between scar functions play a central role. In this paper,
we study the asymptotic behaviour of these matrix elements. In particular,
we provide expressions for the overlap between scar functions and for matrix
elements of the Hamiltonian. It is a remarkable fact that these matrix elements
essentially depend on heteroclinic areas related to pairs of periodic orbits.

PACS numbers: 05.45.Mt, 03.65.Sq

1. Introduction

When a classical Hamiltonian system is chaotic, Gutzwiller’s trace formula [1] provides a tool
for the semiclassical evaluation of the energy spectrum in terms of the periodic orbits (POs)
of the system. This periodic orbit theory has made considerable progress in last 15 years;
for instance, resummation techniques have been applied to improve convergence properties
[2, 3]. However, the theory suffers from a very serious limitation: the number of required POs
increases exponentially with the Heisenberg time.

Recently, we have derived a semiclassical theory of short POs [4, 5]. This formalism
allows us to obtain all the quantum information of a chaotic Hamiltonian system in terms
of a very small number of short POs (which increases at most linearly with the Heisenberg
time). The main idea of this approach is to replace the use of long POs by the evaluation
of the interaction between short POs. In order to clarify this idea, it is worth emphasizing
that related to each short PO (in a given energy region), there is a wavefunction living on the
stable and unstable manifolds before they reach the first homoclinic point. We refer to these
wavefunctions as scar functions, and their semiclassical construction is extensively explained
in [6] (see also [7]). Then, by interaction between short POs we mean Hamiltonian matrix
elements between the corresponding scar functions.
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In this paper, we are mainly interested into the asymptotic behaviour of these matrix
elements; for instance, we will study the overlap between scar functions and matrix elements of
the Hamiltonian. For this reason, we do not consider the most general pair of scar functions, but
only the simplest ones that in any way capture the asymptotic properties of matrix elements3.
In particular, we are interested in the classical invariants which are responsible for that
asymptotic behaviour. Those invariants will be evidently not only the stability index or the
Maslov index which are related to individual POs, but also classical invariants depending on
pairs of POs.

A scar function is constructed with the pieces of stable and unstable manifolds in the
vicinity of a given periodic orbit, while these manifolds go away from the central orbit. When
observed on a Poincaré surface of section, these pieces of manifolds form a cross. So, the
semiclassical analysis of matrix elements between scar functions is mainly related to classical
invariants defined by a pair of crosses. At this point, it is worth mentioning that manifolds
with the same stability do not intersect. Hence, we can think about a pair of parallel crosses;
that is, the stable piece of one cross is parallel to the stable piece of the other, and the same
idea is applied to the pieces of unstable manifolds. Therefore, the unique classical invariant
defined by two crosses is the symplectic area enclosed by the four pieces of manifolds. In this
paper, we refer to this area as the heteroclinic area associated with the pair of periodic orbits,
and we will see that this area plays a central role in the determination of matrix elements.

Of course, matrix elements also depend on a direction transverse to the Poincaré surface
of section. Nevertheless, as we show in appendix A, matrix elements are very insensitive
to such a direction. Actually, this direction plays a role when the periodic orbits live on
different energy shells, and the study of this situation, which does not introduce new concepts,
is discussed in appendix C. For these reasons, in the central part of the paper we only analyse
matrix elements on a Poincaré surface of section.

The paper is organized as follows. Section 2 is devoted to explain the semiclassical
construction of a scar function in the vicinity of a hyperbolic fixed point and to study its
properties in detail. In section 3 we analyse an integral representation which is, in some
way, asymptotically equivalent to the scar state; with this, we are able to obtain its coordinate
representation. The next section contains the analysis of matrix elements, where equations (56)
and (63) are the central expressions for the surface of section contribution to matrix elements.
The last section is devoted to conclusions. Moreover, in appendix B we explain the essential
ideas for the scar function construction in Hamiltonian systems with two degrees of freedom,
and its reduction to a Poincaré surface of section. Finally, appendix D shows a particular
example in the baker’s map to clarify several ideas developed in the paper.

2. Scar functions

In this section, we will construct the scar function on a suitable Poincaré surface of section.
In the vicinity of the fixed point representing the periodic orbit on the surface of section, the
motion of the classical objects used for the construction of the scar function is governed by
a hyperbolic Hamiltonian; see appendix B for a detailed explanation. Then, we will evaluate
the scar state of a fixed hyperbolic point, first in the harmonic-oscillator basis and then, in the
coordinate representation in the vicinity of the fixed point. We were unable to directly obtain
a practical expression for the coordinate representation far away from the fixed point. For this
reason, in the next section we will study an integral representation which seems suitable for
that purpose.

3 There are two types of scar functions: even and odd. In this paper, we only analyse matrix elements between even
scar functions.
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The classical Hamiltonian H(q, p) = λqp defines a hyperbolic point at the origin with
Lyapunov exponent λ, where the unstable manifold lives on the q-axis and the stable one on
the p-axis. For instance, the evolution of a point (q0, p0) with non-null energy occurs on the
hyperbola branch (q0 eλt , p0 e−λt ). We will assume that H(q, p) describes the actual motion
in the region |q| < Q and |p| < P of phase space and we are interested into the construction,
restricted to this region, of wavefunctions with minimum energy dispersion. For the sake of
simplicity, in the following we measure the time in units of λ−1, q in units of Q and p in units
of P. Then, the classical motion is described by

H(q, p) = qp, (1)

in the region |q| < 1 and |p| < 1.
In terms of the usual creation–annihilation operators [8] a† = (q̂ − ip̂)/

√
2h̄ and

a = (q̂ + ip̂)/
√

2h̄, the quantum Hamiltonian is

Ĥ = p̂q̂ + q̂p̂

2
= ih̄

2
(a†2 − a2). (2)

Moreover, the set of harmonic-oscillator states

|n〉 = a†n|0〉√
n!

, for n = 0, . . . , N0, (3)

is a convenient orthonormal basis for the description of wavefunctions restricted to the region
|q| < 1 and |p| < 1 of phase space, if only excitations up to N0 � 1/2h̄ are included4. In
equation (3), the vacuum state in q-representation is given by 〈q|0〉 = (πh̄)−1/4 exp(−q2/2h̄).

In this section, we will restrict our calculation to scar states |φ〉 with null mean energy
because in the other case the calculation is cumbersome. However, in the next section we will
show that they have minimum energy dispersion and consequently we will only be interested
in scar states with such a restriction. Then, the problem of finding |φ〉 that minimizes the
energy dispersion σ , where by definition

σ 2 ≡ 〈φ|Ĥ 2|φ〉
〈φ|φ〉 , (4)

is equivalent to finding the least eigenvalue of Ĥ 2 [6, 9]. Now, taking into account that a†|n〉 =√
n + 1|n + 1〉 and a|n〉 = √

n|n − 1〉, it results in

Ĥ 2|n〉 = h̄2

4
(−an|n + 4〉 + bn|n〉 − an−4|n − 4〉), (5)

with an = √
(n + 1)(n + 2)(n + 3)(n + 4) and bn = (n + 1)(n + 2) + (n − 1)n. It is clear

from equation (5) that the matrix of Ĥ 2 can be decomposed into four blocks, each one related
to basis states four excitations away from each other. However, only two blocks provide
solutions which are relevant in the semiclassical limit (the other two blocks play a role for the
construction of scar functions with non-null mean energy). The first block is constructed with
the subset of states {|0〉, |4〉, |8〉, . . .}, and the second one with the subset {|1〉, |5〉, |9〉, . . .}.
The solution obtained from the first block is the so-called even scar function [6], and we will
obtain its expansion coefficients

|φ〉 =
N∑

j=0

cj |4j 〉, (6)

4 The states given in equation (3) are eigenstates of Ĥ 0 = (p̂2 + q̂2)/2, with eigenenergies h̄(n + 1/2). On
the other hand, the borders of the admitted region along the manifolds have energy H0 = 1/2 (for instance,
H0 (q = 1, p = 0) = H0 (q = 0, p = 1) = 1/2). Then, the maximum excitation is restricted by the condition
h̄(N0 + 1/2) � 1/2.
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where N = N0/4 � 1/8h̄. In this section, we take the limit N → ∞ in order to consider the
semiclassical limit h̄ → 0.

By replacing (6) in (4) and using (5), we obtain

�2 ≡ σ 2

(h̄2/4)
= A

B
, (7)

where � is the so-called universal dispersion [6], with

A =
N∑

j=0

[cj

√
(4j + 1)(4j + 2) − cj+1

√
(4j + 3)(4j + 4)]2, (8)

and

B =
N∑

j=0

c2
j . (9)

As we mentioned previously, the coefficients cj that minimize �2 can be obtained from
the eigenvalue problem Ĥ 2|φ〉 = σ 2|φ〉, where σ 2 is the least eigenvalue; that is, from
equation (5) there results

−Ajcj+1 + Bjcj − Aj−1cj−1 = �2cj (10)

for j = 0, . . . , N , with

Aj = a4j and Bj = b4j . (11)

This set of equations can be solved recursively (see [6]). On the other hand, to obtain an
explicit asymptotic expression for � and the coefficients5, we define a continuous function
c(z) in the range 0 < z � 1, so that

c

(
j

N + 1

)
= cj

for j = 1, . . . , N . Then, the recursive relation (10) transforms into the following ordinary
differential equation,

4z2 d2c(z)

dz2
+ 8z

dc(z)

dz
+

(
1 +

�2

4

)
c(z) = 0 (12)

restricted by the boundary condition c(1) = 0 (because cN+1 = 0). To obtain equation (12),
we have expanded the roots in the coefficients Aj by assuming j � 1, so the differential
equation is a poor approximation to the recursive relation for z = O(1/N).

A positive well-behaved solution of equation (12) is

c(z) = − sin[(�/4) ln z]√
z(N + 1)

. (13)

By considering that this expression is a good approximation to the coefficients for j =
1, . . . , N , and taking c0 = √

6c1/(1 − �2/2) from equation (10), we can evaluate the sums
in equations (8) and (9) in terms of integrals for j � 1. Moreover, defining u ≡ −(�/4) ln z,
integrals are solved explicitly as follows (we are assuming that � is a small parameter that
tends to zero when N → ∞)

A = 4�

∫ u1

0
cos2 u du + O(�2) � 2�

(
u1 +

sin(2u1)

2

)
(14)

5 These coefficients differ by (−1)j from the corresponding ones obtained in [6]. This fact is related to the selected
phase in the definition of the creation–annihilation operators.
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and

B = 4

�

∫ u1

0
sin2 u du + O(1) � 2

�

(
u1 − sin(2u1)

2

)
(15)

where u1 ≡ (�/4) ln(N +1). The term j = 0 in equation (8) is not included in (14) because its
order is equal to the order of the remainder (and the same argument is applicable to (15)). In
the calculation of [6], we have retained these terms in order to obtain an interpolation formula
for �, but here we are mainly interested in its asymptotic behaviour.

By assuming that u1 > 0, we can replace equations (14) and (15) in (7) arriving at the
conclusion that sin(2u1) � 0, or equivalently that u1 converges to π/2. Then, using that
u1 ≡ (�/4) ln(N + 1), N � 1/8h̄ and σ ≡ h̄�/2 (see (7)), we obtain

σ = πh̄

|ln h̄| [1 + O(|ln h̄|−1)]. (16)

To improve cj for fixed values of j as N → ∞, we note first of all that A = O(�) =
O(1/ln N). This means that each term on the right-hand side of equation (8) tends to zero in
the limit N → ∞. Then, assuming that cj converges to the non-null finite value c̃j in this
limit, there results

c̃j

c̃j+1
=

√
(4j + 3)(4j + 4)

(4j + 1)(4j + 2)
. (17)

Hence, a solution of (17) which moreover converges asymptotically (for j � 1) to 1/
√

j =
limN→∞ c(j/N), is given by

c̃j = (2π)1/4√(4j)! �̃(j + 1/2)

22j (2j)! �̃(j + 3/4)
(18)

where �̃(x) is the gamma function of x.
Finally, by coupling equations (13) (which works for j/N a fixed value) and (18) (which

works for j a fixed value), and using the normalization provided by equation (15) (B → π/�),
we obtain the following normalized asymptotic expression6 (exact in the limit N → ∞) for
j = 0, . . . , N

cj =
√

�

π
c̃j sin

[
�

4
ln

(
N + 2

j + 1

)]
. (19)

We stress that c̃j (see (18)) is well approximated by c̃j = [1 − β/j + O(j−2)]/
√

j for j � 1,
when β = 1/16. This type of approximation was considered in [6], where β was obtained
numerically as a function of N and an expression was provided in the range 1 � N � 105.
Nevertheless, according to the previous asymptotic analysis such expression does not work in
the limit N → ∞.

In order to obtain an equivalent expression for the coefficients of the odd scar function
(which is expanded in terms of {|1〉, |5〉, |9〉, . . .}), we simply substitute 4j for 4j + 1 in
equations (6), (8), (11) and (17). Then, the solution is again given by equation (19) whether
we use, in place of equation (18), the following expression,

c̃j = (2π)1/4√(4j + 1)! �̃(j + 3/4)

22j+1/2j ! �̃(2j + 3/2)
,

which is well approximated by c̃j = [1 − 3/16j + O(j−2)]/
√

j for j � 1.

6 We have included a correction of the order N−1 inside the argument of ln(.) to provide an expression valid for all
N. This expression works very well for all N whether a precise value for � is used; for instance, the value provided
by equation (53) (or (54) for odd scar functions) of [6].
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Recently, a new construction of hyperbolic structures was presented in [10]. In that work,
the so-called leading scar state is given in the harmonic-oscillator basis by the coefficients c̃j .
It is worth mentioning that such simplification is not useful for our purposes. In fact, it is easy
to see (from equations (8) and (9)) that by using simply the coefficients c̃j for j = 0, . . . , N ,
there result7 A ∼ N and B ∼ ln N respectively; so, the universal dispersion � goes to infinity
in place of going to zero in the limit N → ∞.

In order to characterize the properties of the scar function note that even momenta of Ĥ

satisfy (use the relation Ĥ 2|φ〉 = σ 2|φ〉)
〈φ|Ĥ 2n|φ〉 = σ 2n = O(|ln h̄|−2n) (20)

where the leading order of σ is given by equation (16), while 〈φ|Ĥ 2n+1|φ〉 = 0. Therefore,
a function that converges to the scar function has to satisfy the previous properties in the
semiclassical limit.

We finish this section by obtaining in leading order, the scar function as an expansion in the
vicinity of q = 0. We assume that the elimination of a finite number of terms in equation (6)
does not change the leading order. Then, it is possible to use the following asymptotic
expression (valid for j � 1) for harmonic-oscillator wavefunctions around q = 0

〈q|4j 〉 � 1

(2π2jh̄)1/4

2j∑
l=0

(−1)l
(2j)!

(2l)!(2j − l)!

(
4q2

h̄

)l

. (21)

Replacing equations (19) and (21) in (6) and changing the order of the sums there results

φ(q) � �1/2

π(2h̄)1/4

∑
l=0

(−1)l

(2l)!

(
4q2

h̄

)l N∑
j (�l)

(2j)lj−3/4 sin[(�/4) ln(N/j)].

We dropped out many terms of the sum over j in order to satisfy j � l, and the
approximation (2j)!/(2j − l)! � (2j)l was used. Then, the sum over j is evaluated with an
integration over the variable u ≡ −(�/4) ln z as before in equations (14) and (15); it gives∑

j � 2lNl+1/44�/(4l + 1)2. Finally, the leading order of the expansion around q = 0 results
(recall that N � 1/8h̄ and � � 2π/|ln h̄|)

φ(q) � 25/2π1/2

|ln h̄|3/2h̄1/2

∑
l=0

(−1)l

(2l)!(4l + 1)2

(q

h̄

)2l

. (22)

From the last equation we observe that individual terms do not contribute to φ(q)

near q = 0 because they are of order h̄−1/4; for instance, 〈q|0〉 = (πh̄)−1/4 exp(−q2/2h̄).
Equation (22) corresponds to even scar functions, and it only provides a practical expression
in the range |q| < O(h̄). For odd scar functions we simply multiply (22) by sgn(q). Finally,
the action of Ĥ on φ is obtained from equation (22), by applying Ĥ = −ih̄(1/2 + q d/dq).
There results

Ĥφ(q) � −ih̄1/223/2π1/2

|ln h̄|3/2

∑
l=0

(−1)l

(2l)!(4l + 1)

(q

h̄

)2l

. (23)

3. An integral representation

The objective of this section is to find an integral representation of the scar state. We will
show that this representation proves very suitable in order to obtain the q-representation in the
intermediate region q ∼ √

h̄.

7 By using cj , A ∼ 1/ln N .
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Based on several previous works [11], we propose the following integral representation8

|φ̃〉 =
∫ T/2

−T/2
dt f (2t/T ) eiθt Û t |0〉, (24)

where T ≡ |ln h̄| is of the order of the so-called Ehrenfest time, and θ is a parameter (we will
omit the explicit dependence of different quantities on θ ). The real function f (x) is defined
in the range |x| � 1, and we will search for the smooth function f (x) that minimizes the
energy dispersion of |φ̃〉. For this purpose, we first of all evaluate the autocorrelation function
F(t) ≡ 〈φ̃|Û t eiθt |φ̃〉 for infinitesimal times (t ∼ 0),

F(t) =
∫ T/2

−T/2

∫ T/2

−T/2
dt1 dt2f

(
2t1

T

)
f

(
2t2

T

)
eiθ(t+t1−t2)〈0|Û t+t1−t2 |0〉. (25)

By changing to new variables s ≡ (t1 + t2)/T and x ≡ (t1 − t2)/T , and using the
well-known result9 〈0|Û t+t1−t2 |0〉 = 1/

√
cosh (t + t1 − t2), equation (25) results in

F(t) = T 2

2

∫ 1

−1
dx h(x)

eiθ(t+xT )

√
cosh(t + xT )

, (26)

with

h(x) =
∫ 1−|x|

−(1−|x|)
ds f (s + x)f (s − x). (27)

Assuming h(x) bounded, the range of x contributing to the integral in equation (26) is
O(1/T ) (because t ∼ 0). Then, by using the following expansion f (s + x)f (s − x) =
f (s)2 + x2[f ′′(s)f (s) − f ′(s)2] + O(T −3), we obtain after an elementary calculation

h(x) = α − β|x| − 2γ x2 + O(T −3), (28)

with α = ∫ 1
−1 f (s)2 ds, β = f (−1)2 + f (1)2 and γ = ∫ 1

−1 f ′(s)2 ds − [f (1)f ′(1) −
f (−1)f ′(−1)].

On the other hand, using the change of variable y ≡ t + xT in equation (26), there
results10

F(t) = T

2

∫ ∞

−∞
dy h

(
y − t

T

)
eiθy

√
cosh y

+ O(e−T/2). (29)

Hence, taking into account that by definition F(t) = ∑
n=0(−i)nMnt

n/n! where

Mn ≡ 〈φ̃|(Ĥ /h̄ − θ)n|φ̃〉,
we obtain after n times differentiation of equation (29)

Mn = (−i)nT 1−n

2

∫ ∞

−∞
dy h(n)

( y

T

) eiθy

√
cosh y

+ O(e−T/2). (30)

Using (28) and (30), the variance of |φ̃〉 results11 in

σ 2

h̄2 ≡ M2

M0
−

(
M1

M0

)2

= β

αI0T
+

4γ

αT 2
+

β2

T 2
O(1) + O(T −3), (31)

8 The variable t in equation (24) is an adimensional quantity. According to the previous section, it is the time in units
of λ−1.
9 〈0|Û t |0〉 = ∫ 〈0|q〉〈q|Û t |0〉 dq = 1/

√
cosh t results from 〈q|Û t |0〉 = (πh̄)−1/4 exp[−(q2/2h̄) e−2t − t/2]. The

used expression for 〈q|Û t |0〉 is exact because the Hamiltonian is quadratic; its accuracy is simply verified by noting
that it satisfies the Schrödinger equation, ih̄∂t = −ih̄(1/2 + q∂q).
10 By making the limits of integration ±∞, we introduce an error of the order e−T/2.
11 In order to reduce the calculation, note that h(x) is an even function and so, its derivatives h(n)(x) have defined
parity. For instance, using (36) we have h(1)(x) � 1 − π2x + π2x2[sgn(x) + 2xδ(x)/3].
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where I0 is the n = 0 case of the following definition:

In ≡
∫ ∞

0
dy yn cos(θy)√

cosh(y)
. (32)

It is clear from (31) that in order to minimize the variance as T → ∞, β must be equal to
zero. This condition means that f (1) = f (−1) = 0 (see (28)) and consequently γ reduces to
γ = ∫ 1

−1 f ′(x)2 dx.
In what follows, we will find the function f (x) that minimizes the leading order of σ 2, or

equivalently (see (31)) that minimizes the functional

�(f ) ≡ γ

α
=

∫ 1
−1 f ′(x)2 dx∫ 1
−1 f (x)2 dx

. (33)

In first place, note that f (x) must satisfy∫ 0
−1 f ′(x)2 dx∫ 0
−1 f (x)2 dx

=
∫ 1

0 f ′(x)2 dx∫ 1
0 f (x)2 dx

(34)

because if the right-hand side of equation (34) is, for instance, smaller than the left side, it
is easy to show that �(f ) > �(f̃ ), where f̃ (x) = f (x) for x � 0, and f̃ (x) = f (−x) for
x < 0. Therefore, from equation (34) it results �(f ) = �(f̃ ), and evidently we can reduce
the search to even functions. Then, we expand f (x) in terms of orthonormal even functions
(vanishing at x = 1) in the range |x| � 1, as follows:

f (x) =
∑
n=0

an cos[πx(n + 1/2)].

By replacing this expansion in equation (33), �(f ) transforms into the ratio of two quadratic
forms

�(f ) =
∑

n=0 a2
nπ

2(n + 1/2)2∑
n=0 a2

n

.

The minimum value of this ratio is equal to the least eigenvalue [9] of the diagonal matrix
with elements π2(n + 1/2)2 (for n = 0, 1, . . .) on the diagonal, which corresponds to n = 0.
In conclusion, the function

f (x) = cos(πx/2) (35)

minimizes γ /α and the minimum value results π2/4. Hence, from equation (31) the leading
order of the energy dispersion is σ/h̄ = π/T , and this value is equal to that obtained in the
previous section for the scar function (see (16)). It is interesting to see that this asymptotic
value is independent of the parameter θ , which is up to order T −1 the mean energy of |φ̃〉
divided by h̄.

To study similarities and differences among hyperbolic structures with different mean
energies and between the scar function and the proposed integral representation, we evaluate
the next order of σ and the 4-momentum M4/M0. To do this, we first substitute (35) in (27)
and obtain

h(x) = (1 − |x|) cos(πx) +
1

π
sin(π |x|) = 1 − π2

2
x2 +

π2

3
|x|3 + O(x4). (36)

By substituting (36) in (30), the energy dispersion up to order T −2 results in
σ

h̄
= π

T + I1/I0
+ O(T −3), (37)
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Figure 1. Plot of σ/h̄ as a function of 1/h̄, for the scar function φ(q) (•), the numerical
approximation π/(|ln h̄|+ 3.45) (——); and the obtained analytical expression (37) for the integral
representation φ̃(q) (- - - -).

where a numerical evaluation near θ = 0 gives I1/I0 � 2.12 − 16.75θ2. It is evident from
(37) that for a fixed value of T, the minimum dispersion is obtained for θ = 0; that is, when
the mean energy is zero.

On the other hand, we mention that although equation (37) provides a good tool to
compare the dispersion of hyperbolic structures with different mean energies, the dispersion
of the scar function (section 2) is smaller (to order T −2) than the value obtained in (37); a
numerical estimation gives σ < πh̄/(T + 3.45) for the even scar function12. For instance, in
figure 1 we compare the dispersion of the scar function (see [6] for a numerical computation)
with the corresponding integral representation, as obtained from (37) for θ = 0. This suggests
that the proposed integral representation does not converge exactly to the scar function in the
semiclassical limit. To probe this assertion, we observe that the 4-momentum of the integral
representation results M4/M0 = 4π2/I0T

3 +O(T −4), while for the scar function it is O(T −4)

(see (20)).
Now, we evaluate the q-representation of |φ̃〉. First around q = 0, which gives a practical

solution for |q| < O(h̄), then for q ∼ √
h̄, and finally for q ∼ 1; in the following we only

analyse the case θ = 0. Substituting (35) in (24) and normalizing |φ̃〉 with the help of (30)
(M0 = I0T + O(T −1), where I0 = �̃(1/4)2/(8π)1/2 for θ = 0) we obtain

φ̃(q) = M
−1/2
0

∫ T/2

−T/2
dt cos(πt/T )

1

(πh̄)1/4
exp[−(q2/2h̄) e−2t − t/2]. (38)

It is evident from this equation that φ̃(q) is an even function, so in the following we only
analyse the q � 0 case. After expanding the exponential around q = 0, the contribution of
each term to the time integral is reduced to the vicinity of t � −T/2. Then, the leading order
of φ̃(q) is

φ̃(q) � 211/4π

�̃(1/4)T 3/2h̄1/2

∑
l=0

(−1)l

2l l!(4l + 1)2

(q

h̄

)2l

. (39)

There are some similarities between the previous equation and the expansion of φ(q) around
q = 0 (see (22)). Observe that the two expansions have the same T = |ln h̄| behaviour, and
the same dependence on q up to second order; namely, 1 − q2/50h̄2.

12 We were unable to obtain analytically the dispersion of the scar function up to order T −2. However, the interpolation
formula derived in [6] provides the asymptotic value πh̄/(T + 3.62). Then, from the previous value and the numerical
calculation of figure 1, the expression σ � πh̄/(T + α), where 3.45 < α � 3.62, seems to be a good estimation.
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In the intermediate region q ∼ √
h̄, the change of variable y ≡ 2[t − t0(q)] transforms

equation (38) into

φ̃(q) = M
−1/2
0

(2π)1/4√q

∫ T −2t0

−T −2t0

cos

[
π

2T
(y + 2t0)

]
exp[−(e−y + y)/4]

dy

2
, (40)

where

t0(q) ≡ 1
2 ln(2q2/h̄). (41)

This integral can be solved in a vicinity of t0(q) = 0 by making the limits of integration ±∞;
see appendix E. Then, in the range h̄

√
2 ln T < q < O(T −2), the following expression results,

φ̃(q) = cos(πt0/T ) − απ sin(πt0/T )/T + O(T −2)√
qT

(42)

where

α ≡
∫ ∞
−∞ y exp[−(e−y + y)/4] dy∫ ∞
−∞ 2 exp[−(e−y + y)/4] dy

� 1.4206.

For t0 < −T/2, φ̃(q) is approximately constant, as it can be derived from equation (39).
On the other hand, it is not difficult to observe that φ̃(q) decays exponentially for t0 > T/2.
After the change of variable x ≡ y + ln(2q2), equation (40) becomes

φ̃(q) = π + O(T −2)

25/4�̃(1/4)T 3/2

∫ ∞

0
x exp[(−2q2 e−x + x)/4] dx,

and this expression can be estimated, for q ∼ 1, by

φ̃(q) ∼ 0.42T −3/2(1 + 3/q) e−2q−0.3q2
.

The next question is to know to what extent φ̃(q) is a good approximation for the scar
function φ(q). In fact, we have verified from equations (22) and (39) that they differ in the
vicinity of q = 0. However, we stress that φ(q) and φ̃(q) are the same in leading order around
q = √

h̄. To see this, we note that only the region ch̄ < q < c′, with c and c′ arbitrary positive
constants, is relevant for the evaluation of some diagonal matrix elements in leading order. For
instance, by using the leading order of φ̃(q) from equation (42) and the change of variables
x ≡ 2t0(q)/T , there results

2
∫ c′

ch̄

φ̃(q)2 dq �
∫ 1

−1
cos(πx/2)2 dx = 1.

This means that the contribution of the regions |q| < ch̄ and |q| > c′ to 〈φ̃|φ̃〉 is of the order
T −1.

As another example, we consider the mean value of Ĥ 2. By using that Ĥ =
−ih̄(1/2 + q d/dq), we obtain from equation (42)

Ĥ φ̃(q) � ih̄π

T 3/2

sin[πt0(q)/T ] + (απ/T ) cos[πt0(q)/T ]√
q

. (43)

Then, using the leading order of equation (43) and working as before, there results

2
∫ c′

ch̄

|Ĥ φ̃(q)|2 dq � (πh̄/T )2
∫ 1

−1
sin(πx/2)2 dx = (πh̄/T )2,

which gives the right value for 〈φ̃|Ĥ 2|φ̃〉 in leading order. Hence, taking into account that
the previous diagonal matrix elements are the same for |φ̃〉 and |φ〉 in leading order, φ̃(q) and
φ(q) must coincide, in leading order, in the intermediate region q ∼ √

h̄. So, in this region

φ(q) � φ̃(q) � cos[πt0(q)/T ]√
qT

, (44)
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Figure 2. For 1/8h̄ = 107, we compare φ(q) (——), φ̃(q) (- - - -) and the estimation given by
equation (42) (· · · · · ·). The three functions are the same to leading order in the intermediate region
q ∼ √

h̄.

and

Ĥφ(q) � Ĥ φ̃(q) � ih̄π

T 3/2

sin[πt0(q)/T ]√
q

. (45)

We mention that equations (44) and (45) are also satisfied, in leading order, by other
hyperbolic structures with null mean energy and minimum dispersion. For instance, the
integral construction∫ Tm/2

−Tm/2
cos(πt/Tm)Û t |4m〉 dt, for m = 0, 1, . . . , (46)

where Tm ≡ T − ln(8m + 1), satisfies the previous properties13 and corresponds to hyperbolic
structures living in the region |q| < 1 and |p| < 1. In this respect, it is interesting to mention
that the scar function φ(q) can be represented, in terms of the previous defined structures,
over the entire q range. Unfortunately, it is difficult to obtain an explicit expression for |φ〉 in
terms of the set provided in equation (46). In any case, it is not difficult to see that the most
important contribution is given by the m = 0 term, because it has the smallest dispersion.

In figure 2 we compare φ(q), φ̃(q) and the analytical approximation to φ̃(q) in the
intermediate region q ∼ √

h̄ (see equation (42)). As was established in equation (44), the
three functions are the same (to leading order) in this region.

4. Matrix elements between scar functions

We will study a Poincaré surface of section matrix elements between scar functions for a two
degrees of freedom Hamiltonian system. The contribution provided by a transverse direction to
the surface of section is discussed in appendices A and C. We assume that on a given Poincaré
surface of section with coordinates (q, p), there are two fixed points with the same stability
index (some times called the Lyapunov exponent) λ at (0, 0) and (q0, p0), respectively14.
Moreover, their stable manifolds are parallels to the p-axis for a range P around the fixed
points; in the same way, the unstable manifolds are parallels to the q-axis for a range Q (see
figure 3). We show in appendix A that the previous picture is generic.

In terms of the units used in section 2 for time, length and momentum, the short time
dynamics in the vicinity of the fixed point (0, 0) is fully described by the local Hamiltonian
H(q, p) = qp for |q|, |p| < 1. Moreover, the Hamiltonian H ′(q, p) = (q − q0)(p − p0)

13 The m = 0 case corresponds to the integral representation of equation (38).
14 This restriction is relaxed in appendix C.
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Figure 3. Plot of the two fixed points at (0, 0) and (q0, p0) considered in the calculation of matrix
elements, and their stable (- - - -) and unstable (——) manifolds over a finite range. Shaded with
oblique lines, the absolute value A = q0p0 of the heteroclinic area defined by the manifolds is
depicted. Arrows indicate the direction of the flux on the manifolds.

for |q − q0|, |p − p0| < 1 describes the dynamics in the vicinity of the other fixed point. In
this respect, we would like to emphasize that these Hamiltonians are not just the restriction
to the surface of section of the full Hamiltonian. They contain global information about the
motion along the corresponding periodic orbit. In fact, they provide a continuous version
of the motion described by the return map in the vicinity of each fixed point. This point is
discussed in detail in appendix B.

Let φ(q) be the scar function centred at (0, 0) as was defined in previous sections;
this wavefunction is the restriction to the Poincaré surface of section of the scar function
constructed in [6]. Then, the scar function φ′(q) centred at (q0, p0) is simply a translation of
φ(q), obtained by the application of a Heisenberg operator [12]

φ′(q) = φ(q − q0) eip0(q−q0/2)/h̄. (47)

Actually, there is an ambiguous phase in the definition of φ′(q), and we have selected the one
that provides real matrix elements; in the following, primed wavefunctions indicate translations
like that in equation (47). Furthermore, the action of Ĥ ′ on φ′(q) is equivalent to the translation
of Ĥφ(q),

Ĥ ′φ′(q) = [Ĥφ](q − q0) eip0(q−q0/2)/h̄. (48)

We emphasize that the two scar functions have the same mean energy, but this point
deserves an explanation. The energy considered in the previous sections is related to the
transverse motion, and we have taken this energy equal to zero for the two scar functions.
However, a scar function also includes the energy of the motion along the orbit (see [6]
and also appendix B); this energy takes discrete values according to a rule of the Bohr–
Sommerfeld type. Then, we assume that the two scar functions also have the same energy
along the corresponding orbit (the same Bohr–Sommerfeld energy). The effect of different
mean energies (when the periodic orbits live on different energy shells) on matrix elements is
discussed in appendix C.

By taking into account that φ(q) is a real even function, φ(q)φ(q − q0) is even around
q = q0/2. Then, the overlap between scar functions is

〈φ|φ′〉 = 2
∫ ∞

q0/2
dq φ(q)φ(q − q0) cos[p0(q − q0/2)/h̄]. (49)



Asymptotic behaviour of matrix elements 599

So, in order to obtain a first estimate of the overlap, we consider the function φ0(q) = 1/
√|q|T ,

which satisfies φ0(q) � φ(q) for all q and φ0(q) � φ(q) for q ∼ √
h̄ (see equations (22) and

(44)). Then, after the change of variable x ≡ 2q/q0 − 1, the overlap becomes

〈φ0|φ′
0〉 = 2

T

∫ ∞

0

cos(αx) dx√
|1 − x2|

= π

T
[J0(α) − Y0(α)] (50)

where J0 and Y0 are the Bessel and Neumann functions of zero order, respectively. α ≡ A/2h̄,
and A = q0p0 is the absolute value of the heteroclinic area enclosed by the four manifolds (see
figure 3). The heteroclinic area is the symplectic area defined by the line integral

∮
p dq along

the rectangle delimited by the four manifolds, where the path is taken following the direction
of the flux on the manifolds. In this example, the direction is anticlockwise and consequently
the heteroclinic area is negative.

For A > h̄ (large values of α), equation (50) takes the form

〈φ0|φ′
0〉 � 2

√
π

T

cos(A/2h̄)√
A/2h̄

. (51)

It is interesting to note that equation (51) behaves like a quantization rule, where the overlap is
zero for A = 2πh̄(n+1/2), with n an integer. For large values of α, it is instructive to estimate
the integral in equation (50) by considering simply its contribution near the divergence at
x = 1 (take x + 1 ∼ 2 and the lower limit of integration equal to −∞) as follows:

2

T

∫ ∞

−∞
dx

cos[α(x − 1) + α]√
2|1 − x| = 2

√
π

T

cos(A/2h̄)√
A/2h̄

. (52)

This rough estimate gives the same result obtained in equation (51). We would also like to
mention a heuristic approximation derived from the fact that manifolds intersect at the points
z1 ≡ (0, p0) and z2 ≡ (q0, 0); see figure 3. Taking into account that the Husimi of scar
functions (a phase space probability density) concentrates along the manifolds, we hope that
the main contribution to the overlap comes from the vicinity of these intersecting points, the
so-called heteroclinic points. Hence, the following estimate appears reasonable,

〈φ0|φ′
0〉 ∼ 〈φ0|z1〉〈z1|φ′

0〉 + 〈φ0|z2〉〈z2|φ′
0〉 (53)

where |z1〉 and |z2〉 are coherent states centred at the intersecting points. The first term of the
rhs results exp (iA/2h̄)2(πh̄/A)1/2/T , while the second one gives its complex conjugated15.
Therefore, this simple estimate, being

√
2 times the one given by equation (51), provides the

main behaviour of the overlap.
In the following, we consider a better approximation to the overlap. Evidently, the most

important discrepancy between φ0 and φ is that φ0 diverges at q = 0 and decreases algebraically
for large q, while φ is finite near zero and decreases exponentially around q = 1. Hence, the
following correction to φ0, which works in the neighbourhood of q = 0, is proposed,

φ1(q) = 1√
q1T

− 1√|q|T for |q| � q1

where q1 = T 2h̄/25π , and φ1(q) = 0 otherwise. With this definition, the function φ0 + φ1

behaves like φ near q = 0 (see (22)), and φ0(q) + φ1(q) � φ(q) for all q. Then, the correction
〈φ1|φ′

0〉 (to the overlap given in equation (51)) can be obtained simply for q0 and p0 ∼ √
h̄,

by making φ′
0(q) ∼ φ′

0(0)

〈φ1|φ′
0〉 ∼ 2 cos(A/2h̄)

T
√

q0

∫ q1

−q1

(
1√
q1

− 1√|q|
)

dq = − T

4π

√
p0〈φ0|φ′

0〉, (54)

15 For the calculation of 〈z2|φ′
0〉 and 〈φ0|z1〉, it is easier to work in p-representation.
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Figure 4. For 1/8h̄ = 105, the plot compares, as a function of A/2h̄, a numerical evaluation of the
overlap between scar functions (· · · · · ·) according to (49), with the estimate given by (56) (——).

and 〈φ0|φ′
1〉 gives the same result. Moreover, by taking into account that a similar analysis

in p-representation would give the correction of equation (54) but with q0 in place of p0, we
expect that this correction corresponds to the error of φ0 for large values of |q|. Then, we
arrive at the conclusion that for q0 and p0 ∼ √

h̄, a better estimation of the overlap is given by

〈φ|φ′〉 ∼ 〈φ0|φ′
0〉(1 − βT/π),

with16

β ≡ (
√

q0 +
√

p0 )/2. (55)

We stress that β is not a classical invariant but it depends on the particular surface of section
selected for the calculation. However, in appendix A we show that after an integration along
a direction transverse to the surface of section, the canonical invariance of matrix elements
is restored. On the other hand, the particular value of β depends on the behaviour of φ near
q = 0; so, if we use the integral representation φ̃ (in place of φ), it is necessary to multiply
the rhs of (55) by �̃(1/4)/(π1/221/4) � 1.720.

It is evident that the previous approximation does not work for A = O(1) because the
overlap changes its sign; from equation (49) we observe that the correction φ1 is simply
responsible for the modulation of the oscillatory function. By taking into account this fact, it
is reasonable to consider the previous correction as the first term in the expansion of a positive
defined function; for instance, an exponential. Then, an estimation of the overlap, for A > h̄,
is given by17

〈φ|φ′〉 ∼ 2
√

π

T

cos(A/2h̄)√
A/2h̄

e−βT/π . (56)

Figure 4 compares, as a function of the heteroclinic area, a numerical evaluation of the
overlap (according to (49)) with equation (56). We observe that they have the same oscillatory
behaviour for A > h̄, although there is some discrepancy between their amplitudes. In order to
study such discrepancy, figure 5 shows the ratio between a numerical evaluation of 〈φ|φ′〉 and
equation (56)18. From the figure, it is evident that equation (56) provides a good estimation of
the order of magnitude and moreover, it is apparently an upper bound (as should be expected
according to the used estimation for φ).

Now, we shall evaluate Hamiltonian matrix elements between scar functions. At this
point, we stress that Ĥ is an approximation valid in the vicinity of the fixed point (0, 0) and

16 Note that β = A1/4 for q0 = p0 , and β > A1/4 for q0 �= p0.
17 Recall that T = |ln h̄|.
18 All numerical calculations are taken for q0 = p0.
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Figure 5. As a function of A, ratio between a numerical evaluation of the overlap (equation (49))
and the estimate given by (56), for 1/8h̄ = 103 (◦), 1/8h̄ = 105 ( ) and 1/8h̄ = 107 (•).

its pieces of manifolds; see appendix B. In this sense, Ĥ cannot be applied to φ′ and for this
reason we impose the Hermitian property by the following definitions,

〈φ|Ĥ h|φ′〉 ≡ 1
2 [〈Ĥφ|φ′〉 + 〈φ|Ĥ ′φ′〉] (57)

and 〈φ′|Ĥ h|φ〉 ≡ 〈φ|Ĥ h|φ′〉∗. The operator Ĥ h, on the lhs of equation (57), is the so-called
pure hyperbolic Hamiltonian in [6] (see appendix B for a detailed explanation). The action of
Ĥ h on scar functions is equivalent to the action of the Hamiltonian of the system Ĥ sys minus
the energy E of the surface of section (which is equal to the Bohr–Sommerfeld energy of the
scar functions φ and φ′); for instance, Ĥ h|φ〉 � (Ĥ sys − E)|φ〉.

As φ(q) and iĤφ(q) are even real functions, equation (57) can be written in the following
way,

〈φ|Ĥ h|φ′〉 = −i

2

∫ ∞

−∞
f (q) eip0(q−q0/2)/h̄ dq, (58)

where the real function

f (q) = iĤφ(q − q0)φ(q) − iĤφ(q)φ(q − q0)

is evidently odd with respect to q = q0/2. Then, the matrix element is

〈φ|Ĥ h|φ′〉 =
∫ ∞

q0/2
f (q) sin[p0(q − q0/2)/h̄] dq. (59)

In the range [q0/2,∞), f (q) has a maximum at q = q0; from equations (22), (23), (44)
and (45), there results for |q − q0| � O(h̄) and q0 � O(

√
h̄)

f (q) � 23/2π1/2h̄1/2[1 − (q − q0)
2/10h̄2] cos[πt0(q0)/T ]

T 2√q0
. (60)

On the other hand, for |q − q0| > O(h̄) (using equations (44) and (45)) we have

f (q) � h̄π

T 2

sin[g(q)]√|q| |q − q0|
, (61)

where from equation (41)

g(q) = π

T
[t0(q) − t0(q − q0)] = π

T
ln

( |q|
|q − q0|

)
.

Working as before in equation (52), we only consider the divergence at q = q0 by using

f0(q) = h̄π

T 2
√

q0|q − q0|
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in place of f (q), and making the lower limit of integration in equation (59) equal to −∞ as
follows:

〈φ|Ĥ h|φ′〉 ∼ h̄π

T 2√q0

∫ ∞

−∞

sin[p0(q − q0/2)/h̄] dq√|q − q0|
= h̄π3/2

T 2

sin(A/2h̄)√
A/2h̄

. (62)

In the following, we analyse the error committed by using f0(q) in place of f (q). First, we
define the correction

f1(q) = 23/2π1/2h̄1/2

T 2√q0
− h̄π

T 2
√

q0|q − q0|
for |q − q0| < q1,

where q1 = πh̄/8, and f1(q) = 0 otherwise. In this way, f0(q)+f1(q) behaves like f (q) near
q = q0 for q0 = O(

√
h̄) (see (60)), and f0(q) + f1(q) � f (q) for all q. Then, the correction

to the matrix element is given by∫ q0+q1

q0−q1

f1(q) sin[p0(q − q0/2)/h̄] dq � −h̄π3/2

T 2

sin(A/2h̄)√
A/2h̄

√
p0

2
.

Using the same arguments given after equation (54), we arrive at the conclusion that this
correction introduces the factor e−β .

Second, we have assumed that sin[g(q)] = 1 (see (61)). In order to estimate the error
of this approximation, we note that according to the factor sin[p0(q − q0/2)/h̄]/

√|q − q0|,
the range q2, around q0, providing the main contribution to the integral satisfies p0q2/h̄ ∼ 1.
Then, taking into account that on the borders of this region we have sin[g(q0 ± q2)] �
sin[(π/T ) ln(A/h̄)], a rough estimation of this correction can be given by a factor which is
the mean value between the unity and sin[(π/T ) ln(A/h̄)].

With the inclusion of these corrections, the Hamiltonian matrix element between scar
functions takes the form

〈φ|Ĥ h|φ′〉 ∼ h̄π3/2

T 2

sin(A/2h̄)√
A/2h̄

{1 + sin[(π/T ) ln(A/h̄)]}
2

e−β. (63)

We recall that equations (56) and (63) use the units chosen in section 2. In order to
obtain these equations in arbitrary units, it is necessary to replace T for ln(QP/h̄), β for
(
√

q0/Q +
√

p0/P )/2, and finally to include the factor λ on the rhs of equation (63). We
would also like to point out that even though in our example of figure 3, the heteroclinic
area is negative, the analysis for the positive case practically follows in the same way. In
fact, by replacing the original hyperbolic Hamiltonian qp with −qp, the flux in figure 3 turns
clockwise. Hence, the overlap does not change while the previous equation changes its sign.
The two possibilities can be considered at the same time by making the following modification
in equation (63):

sin

(
A

2h̄

)
→ −sin

(
1

2h̄

∮
p dq

)
.

Figure 6 compares, as a function of A, a numerical evaluation of the Hamiltonian matrix
element according to (59) with the estimate given by equation (63). We observe that they have
the same oscillatory behaviour although there is some discrepancy between their amplitudes.
In order to study such discrepancy, figure 7 shows the ratio between equations (59) and (63).
From the figure, it is evident that (63) provides a very good estimate of the order of magnitude;
in fact, according to the numerical calculation, this equation overestimates by around 25% the
right value.

Finally, we would like to discuss the range of validity of equations (56) and (63). First,
note that the proposed Hamiltonian approximation (see equation (B.1)) is local and restricted
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Figure 6. For 1/8h̄ = 105, the plot compares as a function of A/2h̄, a numerical evaluation of the
Hamiltonian matrix element between scar functions divided by h̄ (· · · · · ·) according to (59), with
the analytical estimation provided by equation (63) (——).
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Figure 7. As a function of A, ratio between a numerical evaluation of the Hamiltonian matrix
element according to (59) and the estimate given by (63), for 1/8h̄ = 103 (◦), 1/8h̄ = 105 ( )

and 1/8h̄ = 107 (•).

to a limited region of phase space in the vicinity of the orbit. In particular, equation (1) is
unable to reproduce the intersection of manifolds at homoclinic points. Of course, the same
problem appears for the intersection of manifolds at heteroclinic points, the relevant points for
the evaluation of matrix elements. For this reason, the intersection of manifolds at heteroclinic
points is considered at quantum level by the overlap of suitable semiclassical wavefunctions.
So, it should be clear that the obtained expressions are not restricted to those regions where
the local approximation works but they are of general validity.

5. Conclusions

We have studied the asymptotic properties of scar functions on a Poincaré surface of section;
that is, wavefunctions with hyperbolic structure living in a finite region of the q–p plane. Then,
we were able to obtain asymptotic estimates for the overlap between scar functions centred at
different points of the q–p plane, and also for the corresponding Hamiltonian matrix element.
As a remarkable result, these matrix elements depend essentially on the heteroclinic area
between pairs of fixed points.

According to equation (56), the overlap between scar functions tends to zero at least as
1/T , where T is of the order of the Ehrenfest time. Here, we assume that the absolute value
of the heteroclinic area satisfies A > h̄, and this should be the case if we only consider short
periodic orbits with periods no greater than the Ehrenfest time. On the other hand, from
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equation (63) we observe that the product of a typical Hamiltonian matrix element by the
energy density (which is of order h̄−2 for systems with two degrees of freedom) diverges in the
semiclassical limit. These conclusions are relevant for the semiclassical description of chaotic
eigenfunctions in terms of scar functions of short periodic orbits [13]. That is, we can say that
the basis of scar functions is orthogonal in the semiclassical limit, and more importantly, this
basis cannot be connected through perturbation theory to the set of eigenfunctions.

The dependence of matrix elements on the heteroclinic area shows two main
characteristics. On the one hand, they are proportional to 1/

√
A and then, A defines a

first ordering with respect to the interaction among periodic orbits. On the other hand, A

imposes a rule of the Bohr–Sommerfeld type in the following sense: for A = 2πh̄(n + 1/2),
where n is an integer, the Hamiltonian matrix element is maximum (in absolute value), while
the overlap is zero. Moreover, the fact that Hamiltonian matrix elements are proportional to
sin(A/2h̄) means that each non-diagonal matrix element depends, in a very sensitive way, on
the particular value of the corresponding heteroclinic area.

In appendix A we analyse the contribution to matrix elements from a direction transverse
to the Poincaré surface of section when the two scar functions have the same mean energy,
while the generalization for different mean energies is discussed in appendix C. The formulae
in arbitrary units and including all the obtained contributions take the following form,

〈a|b〉 ∼ 2
√

π eiαa,b

T
√

A/2h̄
cos

(
1

2h̄

∮
p dq

)
exp

[
−

(
E

2σT

)2
]

NOv (64)

and

〈a|Ĥ sys − Ē|b〉 ∼ −h̄λ̄π3/2 eiαa,b

T 2
√

A/2h̄
sin

(
1

2h̄

∮
p dq

) {1 + sin[(π/T ) ln(A/h̄)]}
2

× exp

[
−1

2

(
E

2σT

)2
]

NH (65)

where T = ln(S/h̄). The area S is a generalization of the area QP used in section 4. This
area is an estimation of the region transverse to the periodic orbits where the semiclassical
scar function construction works. A reasonable selection for S in terms of classical invariants
is to take the minimum (or mean) value of the homoclinic areas related to the periodic orbits
playing a role in the calculation; see appendix D.

Finally, we would like to state some remarks:

(a) Note that the only reference to the Poincaré surface of section of equations (64) and (65)
is given through αa,b, by the selected phase convention of the scar functions at points a
and b. Hence, we can say that these expressions are canonically invariants.

(b) As scar functions live in finite regions of phase space, matrix elements should tend to
zero when the corresponding fixed points go away from one an other. We stress that such
behaviour is taken into account by the factors e−βT/π and e−β of equations (56) and (63),
respectively.

(c) When both POs have large period, several heteroclinic areas can be relevant for the
evaluation of matrix elements. In such a case, as it was shown in appendix D, matrix
elements consist of a sum of terms like those in equations (64) or (65).

(d) Direct interaction schemes like that of figure 11 are characterized by heteroclinic areas
going to zero in the semiclassical limit19. In contrast, complex interaction processes like

19 Take into account that the length of a typical PO in a scar function basis increases with |ln h̄|.



Asymptotic behaviour of matrix elements 605

-1 0 1 2 3 4
q

-1

-0.5

0

0.5

1

p

a 

a

a’

b’

c2 c 1

b

a’

b’

c’1

c’2

.

.

.

b

.

Figure 8. Poincaré surface of section on the boundary of the stadium billiard. We depict the
behaviour of the stable (- - - -) and unstable (——) manifolds in the immediate vicinity of several
fixed points (•) of the four bounces map. The intersecting points of the manifolds are labelled
with c. The inset shows in configuration space the corresponding periodic orbits.

those of figure 12 (lower part), which are not included in our calculations, always involve
the full phase space. For this reason, we are convinced that heteroclinic areas of direct
processes play a central role in the semiclassical description of chaotic systems. In fact,
the correlation between scar functions strongly depends on these areas for times lower
than the Ehrenfest time, as it was shown in [14].

(e) Littlejohn evaluates overlaps for semiclassical wavefunctions related to intersecting
Lagrangian manifolds [15]. His expression (see equation (2.16) in [15]) includes a
Poisson bracket factor characterizing the intersection of manifolds, which is not present
in our formulae. The reason is that for scar functions such Poisson bracket always takes
the same value by construction. In fact, it can be written as the skew product of vectors
ξs and ξu along the stable and unstable directions. Moreover the lengths of these vectors,
which specify the density of the scar functions on the manifolds, are fixed by the relation
ξu ∧ ξs = J where J is the unity of angular momentum (see equation (11) in [6]).
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Appendix A

In this appendix, we discuss the validity of figure 3 for generic systems and the generalization
of the phase convention used in section 4. Moreover, taking into account that section 4 only
considers the contribution to matrix elements provided by a given Poincaré surface of section,
we analyse the result of an integration in a direction transverse to the section.

First, let us consider as an introductory example two orbits of the stadium billiard which
are periodic after four bounces with the boundary, as it is shown in the inset of figure 8. In
this situation, all points indicated in the figure (a, a′, b, and b′) are fixed points of the map P 4,
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where P is the Poincaré map in Birkhoff coordinates20. Therefore, the behaviour of the
manifolds for these two selected periodic orbits can be analysed in the vicinity of the fixed
points a and b, or equivalently in the vicinity of a′ and b′; see figure 8. It is evident from the
figure that the canonical transformation P yields the apparently complex picture shown in the
vicinity of a and b, very much like the one presented in figure 3.

In the following, we will show that actually figure 3 describes the generic situation. To do
this, we first recall that phase space is not a metric space; so, concepts like distances between
points, angles between intersecting lines, or curvature of lines are misleading. The only
properties of the Poincaré surface of section, invariant with respect to canonical transformations
are (i) the symplectic area defined by a closed line and (ii) the intersection of lines. On the
other hand, in chaotic systems there are two types of time-invariant lines on the Poincaré
section; stable and unstable manifolds. Moreover, manifolds of the same type do not intersect;
we can roughly say that they are parallel.

Taking into account the previous comments, figure 3 is equivalent to a generic picture,
when they are compared with a symplectic structure. Therefore, there should exist a canonical
transformation connecting both situations21.

Now, let us analyse the behaviour of matrix elements under the action of canonical
transformations. For simplicity, we first consider the estimate proposed in equation (53)
for the evaluation of overlaps. As discussed previously, there is a canonical transformation
connecting the points (0, 0), (q0, p0), (0, p0) ≡ z1 and (q0, 0) ≡ z2 of figure 3, with the points
a, b, c1 and c2 of figure 8, respectively. Moreover, the transformation can be approximated
in the vicinity of z1 and z2 by symplectic transformations S1 and S2, respectively. Hence, the
following relations follow,

|〈a|cj 〉〈cj |b〉| � |〈φ0|zj 〉〈zj |φ′
0〉| � 2(πh̄/A)1/2/T for j = 1, 2 (A.1)

where |cj 〉 ≡ Û j |zj 〉. The unitary operator Û j , which is the quantum counterpart of Sj ,
results from the combination of a Heisenberg operator with a metaplectic one [12].

Then, the overlap between the scar functions related to the fixed points a and b takes the
form (we omit constant factors which are irrelevant in the present discussion)

〈a|b〉 ∼ (eiα1 + eiα2)(h̄/A)1/2/T (A.2)

with the phase αj being the difference of phases of the scar functions at cj . That is,

α1 = 1

h̄

[(
Sb +

∫ c1

b

p dq

)
−

(
Sa −

∫ a

c1

p dq

)]
= 1

h̄

(
Sb − Sa +

∫ a

b

p dq

)
(A.3)

and

α2 = 1

h̄

[(
Sb −

∫ b

c2

p dq

)
−

(
Sa +

∫ c2

a

p dq

)]
= 1

h̄

(
Sb − Sa −

∫ b

a

p dq

)
(A.4)

where the phases Sa/h̄ and Sb/h̄ at the corresponding fixed points are selected by convention,
and the line integrals are taken along the pieces of manifolds following the flux direction on
the manifolds; in our example it is anticlockwise. Hence, by substituting equations (A.3) and
(A.4) in (A.2), there results

〈a|b〉 ∼ eiαa,b cos

(
1

2h̄

∮
p dq

)
(h̄/A)1/2/T (A.5)

20 The position q on the boundary is such that qa = 0 and qa′ = 1 + π/2. Moreover, p is the fraction of momentum
tangent to the boundary; so |p| < 1.
21 The essence of this argument results more intuitively in the three-dimensional Euclidean space, where translations
and rotations are the unique transformations keeping invariant the metric structure and the orientation of the space.
Hence, rigid bodies being invariant with respect to translations and rotations, if two rigid bodies are equivalent there
exists a translation plus a rotation connecting them.
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where

αa,b ≡ 1

h̄

(
Sb − Sa +

1

2

∫ a

b

p dq − 1

2

∫ b

a

p dq

)
. (A.6)

This expression for the overlap is equivalent to equation (51). Note that in section 4 we
have selected a phase convention (see equation (51)) to obtain real matrix elements; in the
same way, we can select Sb − Sa in order to satisfy αa,b = 0. However, it should be clear
that in general it is impossible to verify this phase condition for all matrix elements of a scar
function basis; so overlaps and Hamiltonian matrix elements have to include, in general, the
phase αa,b provided in equation (A.6).

Let us study whether there is a simple relation between αa,b and the corresponding phase
αa′,b′ , defined in the vicinity of a′ and b′. First, note that the intersecting points c1 and c′

1
belong to the same heteroclinic orbit. Specifically, let ζa and ζb be finite sequences of symbols
labelling the corresponding periodic orbits. Hence, c1 and c′

1 belong to the heteroclinic orbit22

ζ∞
b ζ∞

a , while c2 and c′
2 belong to ζ∞

a ζ∞
b . Therefore, α1 and α2 are constant values because the

phase increment of the two scar functions is given by the same line integral
∫

p dq/h̄ along
the corresponding heteroclinic orbit. In particular, αa,b = (α1 + α2)/2 is also a constant value
and then αa,b = αa′,b′ .

From the previous discussion, we arrive at the conclusion that each term on the rhs of
equation (A.2) is a constant value. So in order to evaluate, for instance, the contribution
of the first term in a direction transverse to the section, we simply integrate this constant
value along the corresponding heteroclinic orbit. At this point, there is apparently a problem
because ζ∞

b ζ∞
a is not periodic and consequently the integral diverges. The origin of this

problem is related to the approximation used in equation (A.1). The functions φ0(q) and
φ′

0(q), introduced in equation (50), are right solutions if the pieces of manifolds in figure 3
go to infinity. However, as we saw in equation (56), when the pieces of manifolds are limited
to a finite range, the parameter β is relevant. This parameter is not invariant with respect to
canonical transformations; hence, the overlap at different transverse sections takes in principle
different values.

To clarify the situation, let us come back to figure 8 by introducing the Euclidean distance
d( , ) in the plane q–p; of course, our conclusions do not depend on the particularly used
metric. Note that d(a, c1) � d(b, c1) while γ d(a′, c′

1) � d(b′, c′
1)/γ , where γ is a stretching

factor; γ ∼ eλ̃ with λ̃ the Lyapunov exponent per bounce. So, the parameter β increases
by around the factor23 (

√
γ + 1/

√
γ )/2 when c1 evolves towards c′

1, and the same happens
when c1 evolves by the application of P −1. Therefore, we can say that there is a point on the
heteroclinic orbit (in our example it is c1) where β takes its minimum value, β = A1/4, and
the Poincaré contribution to the first term of the overlap is maximum. Moreover, as c1 evolves
forwards or backwards in time, β increases according to the relation

β(t) � A1/4(eλt/2 + e−λt/2)/2 = A1/4 cosh(λt/2) (A.7)

with λ the Lyapunov exponent per unit time. Hence, the transverse contribution to the first
term is provided by the following well-behaved factor

NOv ≡
∫ ∞

−∞

e−β(t)T /π

√
TaTb

dt �
∫ ∞

−∞

exp[−(A1/4T/π) cosh(λt/2)]√
TaTb

dt (A.8)

22 This orbit is the simplest one that converges to ζa (ζb) when the system evolves forwards (backwards) in time. In
general, cycle permutations of the sequences ζa and ζb define different heteroclinic orbits ζ∞

b ζ∞
a ; see appendix D

where an example clarifies this point.
23 An estimate for β is given by (

√
d(a, c1) +

√
d(b, c1) )/2.
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where Ta and Tb are the periods of the periodic orbits related to a and b, respectively24. Of
course, the integration along the other heteroclinic orbit, in order to evaluate the transverse
contribution of the second term of equation (A.2), is equal to the previous one. So, by
substituting e−βT/π for NOv in equation (A.8), the overlap takes into account the transverse
direction to the Poincaré section.

In the case of Hamiltonian matrix elements, the same analysis follows with e−β in place
of e−βT/π . Hence, the factor to be included in equation (63), in place of e−β , results in

NH ≡
∫ ∞

−∞

e−β(t)

√
TaTb

dt �
∫ ∞

−∞

exp[−A1/4 cosh(λt/2)]√
TaTb

dt . (A.9)

We would like to stress that for the most interesting cases, the previous factors are very
insensitive to the involved parameters. For instance, let us consider short periodic orbits with
periods of the order of the Ehrenfest time (the typical case); that is, Ta, Tb ∼ |ln h̄|/2λ. Then,
for strong interactions corresponding to A ∼ h̄, equations (A.8) and (A.9) become, in leading
order, equal to 2, and for intermediate interactions (A ∼ √

h̄) they become equal to 1.25 This
interaction scheme is discussed in the baker’s map in appendix D.

Appendix B

In this appendix, we discuss the scar function construction for two degrees of freedom
Hamiltonian systems, and the accuracy of the local Hamiltonian approximation used for
the evaluation of Hamiltonian matrix elements.

Let γ be an unstable periodic orbit with period T and the Maslov index µ, and let x and y

be curvilinear coordinates in configuration space along and transverse to γ , respectively. We
use a synchronized (or adiabatic) motion approximation [6] where the fast motion along γ is
decoupled from the slow transverse one. In this approximation, all the orbits in the vicinity of
γ move in phase space with the same value of the variables x and px . Moreover, by virtue
of Floquet’s theorem the transverse motion, defined by y and py , is decomposed into one
of periodic nature and another of hyperbolic character. Therefore, the Hamiltonian takes
the form

Hsys(x, px, y, py) � H‖(x, px) + Hp(y, py, x) + Hh(y, py, x). (B.1)

The variable x appearing in Hp and Hh works as a parameter and plays the role of the time; so
both transverse Hamiltonians depend periodically on the time with period T.

We emphasize that the Hamiltonian on the rhs of equation (B.1) is unbounded; that is,
manifolds go away from the central orbit indefinitely. Hence, this approximation describes
correctly the exponential divergence but eliminates the mixing property. On the other hand,
the behaviour of the manifolds, while they go away from γ , can be described with arbitrary
precision. In particular, a quadratic transverse Hamiltonian is sufficient for the description of
their linear behaviour [6].

The restricted Hamiltonian H‖(x, px) + Hp(y, py, x) takes into account the topology of
the orbits in the vicinity of γ . The motion described by this contribution is neutral and all the
neighbouring orbits are periodic. When µ is even, these orbits have period T and take µ/2
turns around γ . For µ odd, the neighbouring orbits, of period 2T , give µ turns around γ .

Of course, these neighbouring closed paths (periodic orbits of the restricted Hamiltonian)
are not classical trajectories of the full Hamiltonian H‖ + Hp + Hh. However, we remark that

24 The factor 1/
√

TaTb normalizes the scar functions in the direction transverse to the Poincaré section.
25 We used the asymptotic approximation

∫ ∞
−∞ exp[−α cosh(x)] dx � log(1/α2), which is valid for 0 < α � 1.

Moreover, the expression log(1 + 1.260947/α2) works satisfactorily up to α ∼ 1, and the expression (1 − 1/8α)√
2π/αe−α works for α > 1.
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this family of closed paths is invariant with respect to the full evolution; that is, a periodic orbit
of H‖ + Hp evolves with the Hamiltonian H‖ + Hp + Hh within the family of periodic orbits of
H‖ + Hp. Therefore, the time evolution of these closed paths can be analysed by the evolution
of their intersecting points with a transverse surface of section defined at a given value x0.
In such a case, the evolution of the closed paths is taken into account by Hh(y, py, x0). It
should be clear that this evolution is right in those regions of phase space where the manifolds
resulting from H‖ + Hp + Hh provide a good approximation to the actual manifolds of γ .

To clarify the previous picture, let us consider the Hamiltonian H(x, px, y, py) = p2
x +

x2+p2
y−y2. This unbounded Hamiltonian only contains one periodic orbit at each given energy,

defined by the condition py = y = 0. As the mixing property is not present in this Hamiltonian,
the approximation provided by equation (B.1) is actually exact. Moreover, the implied
decomposition is given by H‖(x, px) = p2

x + x2,Hp(y, py, x) = 0 and Hh(y, py, x) =
p2

y − y2.26 Note that Hp = 0 because the topology of the neighbouring orbits is trivial in this
example; the stable (unstable) manifold is defined by the relation py = −y (py = y) when
observed at an arbitrary value x0.

The motion of the restricted Hamiltonian H‖ + Hp = p2
x + x2 consists of periodic orbits

equivalent to the central one, but where the transverse variables are shifted from py = y = 0
to arbitrary values py = p0 and y = y0 specifying the given orbit. The important point
to be noted is that these closed paths, or equivalently these periodic orbits of the restricted
Hamiltonian, evolve under the action of the full Hamiltonian in a trivial way. The motion of
the variables x and px is unaffected by the inclusion of Hh, so a closed path evolves according
to a translation along the transverse directions. In this way, periodic orbits of H‖ + Hp evolve
to other ones, and this evolution is governed by Hh.

Now, we come back to the general discussion by mentioning that these neighbouring
closed paths are the classical objects on which we semiclassically construct scar functions [6].
For instance, let us consider a bunch of closed paths of width

√
h̄ around γ . When looked at

on a transverse surface of section defined by x = x0, these paths cross the section at a given
set of points on the plane y–py . Correspondingly, the semiclassical construction consists of
(i) a local plane-wave approximation along the bunch of closed paths with energy equal to the
energy of γ (so, the possible energies of γ must satisfy a quantization condition of the Bohr–
Sommerfeld type), and (ii) a transverse wave packet related to the set of intersecting points in
such a way that its evolution is described by the quantum version, Ĥ h, of Hh(y, py, x0). Hence,
by evolving the transverse wave packet with Ĥ h , the scar state, |φ〉, can be constructed as
explained in section 3. Moreover, the action of Ĥ h on |φ〉 provides a good local approximation
for the action of the quantum Hamiltonian of the system

Ĥ h|φ〉 � (Ĥ sys − E)|φ〉 (B.2)

where E is the energy of γ . This relation results from the fact that |φ〉 is constructed with
periodic orbits of H‖ + Hp, and then (Ĥ ‖ + Ĥ p)|φ〉 � E|φ〉.

Equation (B.2) is the starting point for the evaluation of Hamiltonian matrix elements.
When two periodic orbits live in a common region of phase space, there exists a suitable
surface of section where the vicinity of these orbits can be represented by figure 3. Hence, the
expressions derived in section 4 are justified.

However, we emphasize that this approach contains an essential error. The application
of Ĥ h on |φ〉 uses the knowledge of the position of the corresponding fixed point; but such
information should be restricted at quantum level by the uncertainty principle. Therefore, the
local Hamiltonian approximation incorporates a harmful classical ingredient that destroys the

26 In the generic case, Hh (and also Hp) is a polynomial with coefficients being functions of x.
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Figure 9. Relative level of non-Hermiticity, E , of Hamiltonian matrix elements between scar
functions according to equation (B.3), as a function of α ≡ (2πh̄/A)1/2. For 1/8h̄ = 107 (•),
and for 1/8h̄ = 105 (�). The straight line satisfies the relation E = 0.3 α.

Hermitian property of the operator. This is the price we have to pay for reducing the dynamical
information to the immediate vicinity of an orbit.

An estimate of this error can be obtained by simple arguments. The uncertainty of the
fixed point (q0, p0) (see figure 3) being around

√
h̄ for each variable, the relative error of the

heteroclinic area A is ∼ √
h̄/A. So, as Hamiltonian matrix elements essentially depend on

A, their relative error should also be ∼√
h̄/A. In order to verify this prediction, we note that

a measure of the relative error is given by the level of non-Hermiticity of matrix elements
(the notation of section 4 is used)

E(A) ≡ |〈Ĥφ|φ′〉 − 〈φ|Ĥ ′φ′〉|mean

|〈Ĥφ|φ′〉 + 〈φ|Ĥ ′φ′〉|mean
. (B.3)

Taking into account that numerator and denominator are oscillatory functions of A/2h̄, we
consider mean values over the range [A/2h̄ − π/2, A/2h̄ + π/2]. Figure 9 depicts E as a
function of α ≡ (2πh̄/A)1/2, for two different values of h̄, showing that the relation E ∼ 0.3 α

works.
Finally, it is worth mentioning that the recipe given by equation (57) imposes the Hermitian

property on Hamiltonian matrix elements. We hope that this trick reduces the discussed error;
numerical studies in billiards or maps should shed light on this point. However, we note that
this error is not a serious problem for the evaluation of matrix elements between scar functions
of short periodic orbits because in such a case, the heteroclinic area is greater than h̄.

Appendix C

We will evaluate matrix elements between the scar functions φ and φ′, with mean energies
E and E′, respectively; these energies are the so-called Bohr–Sommerfeld energies in [6].
Taking into account that each scar function lives on a given energy shell, it is reasonable
to hope that matrix elements decrease as the corresponding energy shells go away from one
another. Even though this is a simple and clear picture, the arguments used in this appendix
are of quantum nature because we have a deep knowledge of the spectral behaviour of scar
functions.

In section 4, we used the same stability index λ for the two fixed points because all
equations derived in the paper use λ−1 as the unity of time; so λ is not explicitly present in
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those equations. Here, arbitrary units are used and consequently, we admit different stability
indices λ and λ′ for the periodic orbits associated with φ and φ′, respectively. Then, the energy
dispersions of φ and φ′ are given in leading order by σ � λπh̄/|ln h̄| and σ ′ � λ′πh̄/|ln h̄|.

We note that according to the meaning of energy dispersion, the overlap 〈φ|φ′〉 should be
practically zero for |E| � σT , where E ≡ E − E′ and σT ≡

√
σ 2 + σ ′2. Of course, such

a situation is not taken into account neither in (56) nor in (A.8) because they were derived for
E = 0.

In order to solve the question, it is worth emphasizing that scar functions are constructed
by using an adiabatic approximation for the motion in the vicinity of the periodic orbit, where
the slow transverse motion is decoupled from the fast one along the orbit; see appendix B
for a detailed discussion. Within the same approximation, the overlap is decoupled into two
factors related to the corresponding motions. Hence, the slow transverse motion is given by
the contribution on the surface of section (see equation (56)), with an energy section equal
to Ē ≡ (E + E′)/2.27 On the other hand, we hope that the factor related to the fast motion
(transverse to the section) has a smooth dependence on E. As equation (A.8) provides
the contribution transverse to the surface of section when E = 0, we analyse the required
modification for E �= 0.

Taking into account that the overlap can be written in the basis of eigenfunctions of the
system as 〈φ|φ′〉 = ∑

µ〈φ|φµ〉〈φµ|φ′〉, the smooth dependence on E should be related to
the smoothed distributions of |〈φ|φµ〉| and |〈φ′|φµ〉|.28 For distributions living in the same
energy region, the factor is close to the unity, and when they are far away the factor should be
around zero.

In equation (20) there is information about the smoothed distribution of the square modulus
of the amplitudes in the basis of eigenfunctions. However, we stress that a detailed numerical
study in a realistic system (the Bunimovich stadium billiard) shows that a scar function is
distributed in the spectrum, following a Gaussian distribution with second momentum given
by equation (20). Evidently, higher even momenta are not well described by (20) because, for
instance, the 4-momentum of the Gaussian distribution is 3σ 4. This means that equation (20)
provides the right |ln h̄| order for all n, but the precise value only for the second momentum.
This discrepancy is related to the mixing property of chaotic systems because in our derivation
of equation (20), we have not considered the intersection of the manifolds.

In conclusion, according to the previous discussions we propose the following expression
for the overlap between scar functions with different mean energies

〈φ|φ′〉(E) � exp [−(E/2σT )2]〈φ|φ′〉. (C.1)

The factor exp [−(E/2σT )2] results from the overlap of two Gaussian distributions with
dispersions

√
2σ and

√
2σ ′, which describe the smoothed distributions of |〈φ|φµ〉| and

|〈φ′|φµ〉| respectively.
In the same way, we propose the following expression for the Hamiltonian matrix element

between scar functions with different mean energies:

〈φ|Ĥ sys − Ē|φ′〉(E) � exp
[− 1

2 (E/2σT )2
]〈φ|Ĥ h|φ′〉. (C.2)

On the lhs of the previous equation, we have included the energy Ē, in place of E or E′,
in order to impose the Hermitian property to Ĥ sys. On the rhs of equation (C.2), the factor
1/2 inside the exponential has taken into account the fact that the dispersion of |〈φµ|Ĥφ〉| is

27 We note that the representation of scar functions on the surface of section is unchanged by energy variations of the
order of dispersion. In this respect, the evaluation of equation (56) is practically the same at energies of the section
equal to E, E′ or Ē.
28 The strong correlation between the amplitudes 〈φ|φµ〉 and 〈φµ|φ′〉 is taken into account by the contribution on the
section.
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Figure 10. The periodic orbits (01)∞ and (001)∞ of the baker’s map are indicated with and �,
respectively. (a) Six consecutive points of the heteroclinic orbits (01)∞(001)∞ and (001)∞(01)∞
are also depicted in (•) and (◦), respectively; starting at n = −3 solid and dotted lines help to
follow the corresponding sequence. (b) Homoclinic areas related to each periodic orbit with the
corresponding relevant homoclinic points (•).

√
3 times the dispersion of |〈φ|φµ〉| (and the same for φ′). Finally, the factor 〈φ|Ĥ h|φ′〉 is the

one corresponding to E = 0, with stability index λ̄ = (λ + λ′)/2 in order to impose again
the Hermitian property on matrix elements.

Appendix D

In this appendix, we clarify with an example the interaction picture described in the second
part of appendix A. Moreover, we analyse the involved approximation by considering figure 3
as the unique relevant mechanism of interaction.

In order to simplify the discussion we have selected the baker’s map as our dynamical
system. The phase space of the map is the square 0 � q < 1, 0 � p < 1. By using a binary
expansion of these coordinates, as q = ·a0a1a2 . . . and p = ·a−1a−2a−3 . . . (aj = 0 or 1), a
point of phase space can be represented by a doubly infinite binary sequence

(q, p) = . . . a−3a−2a−1 · a0a1a2 . . . .

Then, the action of the map over (q, p) is specified by a right-shift of the central dot, which
identifies the present position on the orbit. When the central dot is not included, we simply
refer to the orbit as a geometrical object.

Let us consider the interaction of POs with different period in order to show that the
description of appendix A can be applied to general pair of POs. The only primitive PO of
period 2 consists of the points (1/3, 2/3) and (2/3, 1/3), and it is represented by the infinite
sequence . . . 010101 . . . ≡ (01)∞, while the PO of period 3 with symbol (001)∞ contains the
points (1/7, 4/7) (2/7, 2/7) and (4/7, 1/7). In figure 10(a) these POs are shown with and
�, respectively; moreover, the most relevant heteroclinic orbits contributing to the interaction
between these POs are plotted with circles. The point (1/7, 2/3) = . . . 0101 · 001001 . . . =
(01)∞ · (001)∞ corresponds to the simplest heteroclinic orbit that goes from (01)∞ to
(001)∞ and six consecutive points of this orbit are indicated with •. Equivalently, the point
(1/3, 4/7) = (001)∞ · (01)∞ corresponds to the simplest heteroclinic orbit that goes from
(001)∞ to (01)∞ and also six consecutive points are indicated with (◦). On the other hand,
figure 10(b) indicates with • the pair of homoclinic points (2/3, 2/3) = (01)∞ · (10)∞ and
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n=–3 n=–2 n =–1

n = 2n = 1 n = 0

Figure 11. Six consecutive steps of the most relevant interaction scheme between the POs (01)∞
and (001)∞ are depicted. This scheme is constructed with the heteroclinic orbits shown in
figure 10(a). The corresponding heteroclinic area is −8/441.

(1/3, 1/3) = (10)∞ · (01)∞ related to (01)∞, and the pair (4/7, 2/7) = (010)∞ · (100)∞ and
(2/7, 1/7) = (100)∞ · (010)∞ related to (001)∞. Each pair of points defines a homoclinic
area, with absolute value S being an estimate of the area QP of section 4 where each scar
function is constructed. In our simplified model of section 4 the area QP is the same for the
two POs, so an estimate of this area can be the minimum absolute value of the two homoclinic
areas indicated in the figure; that is, S = 2/49.

The most important point to be noted is that each pair of heteroclinic orbits defines
univocally a given interaction picture. For instance, figure 11 follows the interaction scheme
related to the previously mentioned heteroclinic orbits during six steps. This figure shows
clearly that an interaction picture is not of periodic nature, but of hyperbolic character. That is,
there is a time n0 (in our example between n = −1 and n = 0) where the interacting rectangle
reduces to a square, while for times going away from n0 the rectangle departs more and more
from a square shape. We can roughly say that the interaction is specified by a tube with fixed
transverse area but where its shape changes strongly as it departs from a given transverse
position.

The pieces of manifolds of figure 11 are of two types. At n = −2,−1, 0 and 1 they
always go away from the corresponding fixed point, while at n = −3 and 2 there are pieces
of manifold that abandon the interaction region and later come back to it. Evidently, the last
situation cannot be reproduced by the Hamiltonian approximation discussed in appendix B,
which only describes manifolds that go away from a fixed point. However, it should be clear
that the interaction at n = −3 or n = 2 is completely equivalent to the other situations.
That is, the interacting scheme consists of a rectangle defined by the periodic and heteroclinic
orbits. So the same formulae derived for cases like those at n = −2,−1, 0 and 1 should be
right for other situations like those at n = −3 or n = 2; in fact, canonical transformations
connect the different pictures. Of course, the contribution to matrix elements at n = −3 or
n = 2 has to be much smaller than at n = −1 or n = 0 because scar functions are limited in
extension by the homoclinic areas shown in figure 10(b). But this fact is taken into account by
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(a) (b) (c)

n =–1 n = 0 n = 1 

Figure 12. Upper panels: interaction scheme corresponding to the heteroclinic orbits with position
at time n = 0 given by (2/3, 4/7) = (001)∞ · (10)∞ and (1/7, 1/3) = (10)∞ · (001)∞.
The corresponding heteroclinic area is 55/441. Lower panels: interaction schemes related to
the heteroclinic points (a) (2/3, 1/14) = (100)∞0 · (10)∞ and (1/7, 1/3) = (10)∞ · (001)∞,
(b) (5/6, 2/7) = (010)∞ · 1(10)∞ and (15/28, 2/3) = (01)∞ · 10(001)∞, and (c) (2/3, 1/7) =
(100)∞ · (10)∞ and (1/6, 9/14) = (010)∞1 · 0(01)∞.

our formulae because β(n) � (A/S)1/4 cosh[λ(n − n0)/2] (see (A.7)), and the contribution
to matrix elements decays exponentially with β; that is, exponentially with an exponential
of |n − n0| (see equations (A.8) and (A.9)). Here, A = 8/441 is the absolute value of the
heteroclinic area corresponding to this interaction scheme.

The upper part of figure 12 shows another interaction scheme corresponding to the
heteroclinic orbits with position at n = 0 given by (1/7, 1/3) = (10)∞ · (001)∞ and
(2/3, 4/7) = (001)∞ · (10)∞. The heteroclinic area related to this interaction scheme is
around seven times greater than the heteroclinic area of figure 11. So, taking into account
that the maximum contribution to matrix elements (it occurs for n = n0) is proportional
to exp[−(A/S)1/4|ln h̄|/π ]/

√
A for overlaps and to exp[−(A/S)1/4]/

√
A for Hamiltonian

matrix elements, it is clear that the contribution related to figure 11 is the most relevant one.
Specifically, the ratio between the contributions related to figures 11 and 12 (upper part) is
∼2.6/h̄0.16 for the overlap and ∼4.3 for the Hamiltonian matrix element. On the other hand,
it should be clear that the contribution provided by the upper part of figure 12 can also be
considered by using exactly the same formulae. So the evaluation of matrix elements simply
results by adding the contributions provided by all direct interaction schemes like that of
figures 11 and 12 (upper part). In our example, there is one more interaction scheme (with the
same heteroclinic area of figure 12, upper part) which satisfies the formulae of section 4;
it is defined by the heteroclinic points (4/7, 2/3) = (01)∞ · (100)∞ and (1/3, 1/7) =
(100)∞ · (01)∞.

On the other hand, there is an infinite number of interaction schemes which cannot
be described by our formulae. They are characterized by complex heteroclinic orbits;
that is, heteroclinic orbits where the transition from one PO to the other includes an
intermediate excursion to other places of phase space. For instance, in figure 12
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(lower part) we depict three of these schemes (the simplest ones) related to the heteroclinic
points: (a) (2/3, 1/14) = (100)∞0 ·(10)∞ and (1/7, 1/3) = (10)∞ ·(001)∞, (b) (5/6, 2/7) =
(010)∞ · 1(10)∞ and (15/28, 2/3) = (01)∞ · 10(001)∞, and (c) (2/3, 1/7) = (100)∞ · (10)∞

and (1/6, 9/14) = (010)∞1 · 0(01)∞. Evidently, the contribution provided by each one of
these complex schemes is smaller than that related to a direct process because they always
contain pieces of manifolds which are of the order 1. This is a strong difference with respect
to direct interaction schemes as described above, where the pieces of manifolds defining the
rectangles can be arbitrarily small.

It is possible to make a rough estimate of the contribution given by a complex process
using the formulae of direct processes with the heteroclinic area given by the unity (the area of
the full phase space). Hence, ratios between the contributions for complex and direct processes
are

√
A exp

[
− (1 − A1/4)|ln h̄|

S1/4π

]
and

√
A exp

[
− (1 − A1/4)

S1/4

]
for overlaps and Hamiltonian matrix elements, respectively. Therefore, for overlaps the ratio
always goes to zero in the semiclassical limit. Moreover, for Hamiltonian matrix elements
the ratio also goes to zero in practically all the cases because the homoclinic area being
proportional to the inverse of the period results S ∼ 1/|ln h̄|.29

In conclusion, the interaction between POs is dominated by a finite number of heteroclinic
orbits; those describing a direct transition from one PO to the other. These heteroclinic orbits,
grouped in pairs, define direct interaction schemes like that of figure 3. Each pair specifies an
heteroclinic area, and only those areas smaller than S will be relevant for computing matrix
elements.

Appendix E

In this appendix, we develop in detail the mathematical steps for going from equation (40)
to equation (42). The calculation being trivial for t0(q) ≡ 1

2 ln(2q2/h̄) = 0, we assume that
t0(q)/T tends to zero with h̄ in order to replace the limits of integration in equation (40)
by ±∞. Of course, this assumption limits the range of q where the calculation can be
accomplished.

With the change of variable z ≡ y − (T − 2t0) (in the following we omit the argument
of t0), the error of the integral in equation (40) for modifying the upper limit becomes

A ≡
∣∣∣∣
∫ ∞

T −2t0

cos

[
π

2T
(y + 2t0)

]
e−(e−y+y)/4 dy

∣∣∣∣ <

∫ ∞

0

∣∣∣∣cos

(
π

2
+

πz

2T

)∣∣∣∣ e−(z+T −2t0)/4 dz.

Moreover, as the effective integration range of the variable z is finite, we have | cos(π/2 +
πz/2T )| � πz/2T . So, A is bounded by the relation

A <
π e−(T −2t0)/4

2T

∫ ∞

0
z e−z/4 dz ∼ e−(T −2t0)/4

T
. (E.1)

In the same way, with the change of variable z ≡ −(y + T + 2t0), the modulus of the
lower part of the integral in the range −∞ < y < −T − 2t0 becomes

B =
∫ ∞

0

∣∣∣∣cos

(
π

2
+

πz

2T

)∣∣∣∣ exp

(−ez+T +2t0 + z + T + 2t0

4

)
dz. (E.2)

By expanding the exponent of the previous exponential function around z = 0

−ez+α + z + α = −eα + α − (eα − 1)z − |O(z2)|
29 Take into account that in a basis of scar functions the period of practically all the short periodic orbits is ∼|ln h̄|.
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where α ≡ T + 2t0, we note that the effective range of integration in (E.2) goes to zero with
h̄. Hence, B is bounded by

B <
π

2T
exp

(−eα + α

4

) ∫ ∞

0
z exp

[
−

(
eα − 1

4

)
z

]
dz < O

[
1

T
exp

(
−eT +2t0

4

)]
. (E.3)

Consequently, by accepting an error O(T −2) for the integral in (40), the limits of
integration can be taken ±∞ if A < O(T −2) and B < O(T −2); moreover using
equations (E.1) and (E.3), these conditions limit the range of validity to q < O(T −2) and
q > h̄

√
2 ln T , respectively.

Finally, by setting the limits ±∞ in equation (40), it is easy to derive (42); only note that∫ ∞

−∞
exp[−(e−y + y)/4)]dy =

√
2�̃(1/4).
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